
Package: rwty (via r-universe)
August 22, 2024

Type Package

Title R We There Yet? Visualizing MCMC Convergence in Phylogenetics

Version 1.0.2

Description Implements various tests, visualizations, and metrics for
diagnosing convergence of MCMC chains in phylogenetics. It
implements and automates many of the functions of the AWTY
package in the R environment, as well as a host of other
functions. Warren, Geneva, and Lanfear (2017),
<doi:10.1093/molbev/msw279>.

License GPL-2

Depends R (>= 3.3.0), ape, ggplot2,

Imports reshape2, phangorn, coda, viridis, grid, plyr, ggdendro,
GGally, parallel, usedist, plotly, png, gifski, gganimate,
transformr, sf, units, beepr, DT, TreeDist, magick,

Suggests knitr, testthat, markdown, rmarkdown, stringi

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

Repository https://danlwarren.r-universe.dev

RemoteUrl https://github.com/danlwarren/rwty

RemoteRef HEAD

RemoteSha 58c235ba6ba7ab8247aae6b37575a64f38d736af

Contents
analyze.rwty . 2
check.chains . 4
clade.freq . 5
combine.ptables . 5
cumulative.freq . 6
estimate.autocorr.m . 7

1

https://doi.org/10.1093/molbev/msw279

2 analyze.rwty

fungus . 8
load.multi . 8
load.trees . 9
makeplot.acsf.cumulative . 10
makeplot.acsf.sliding . 11
makeplot.all.params . 12
makeplot.asdsf . 13
makeplot.autocorr . 14
makeplot.pairs . 15
makeplot.param . 16
makeplot.pseudo.ess . 17
makeplot.splitfreq.matrix . 17
makeplot.splitfreqs.cumulative . 18
makeplot.splitfreqs.sliding . 19
makeplot.topology . 20
makeplot.treespace . 21
parse.clades . 22
print.rwty.chain . 23
salamanders . 24
slide.freq . 24
topological.approx.ess . 25
topological.autocorr . 26
topological.pseudo.ess . 27
tree.dist.matrix . 28
treespace . 30

Index 32

analyze.rwty analyze.rwty, the main interface for rwty analyses and plots.

Description

This is the main user interface to rwty. It allows users to conduct simple visualizations of MCMC
chain performance with very few arguments.

Usage

analyze.rwty(chains, burnin = 0, window.size = 20,
treespace.points = 100, n.clades = 20, min.freq = 0,
fill.color = NA, filename = NA, overwrite = FALSE, facet = TRUE,
free_y = FALSE, autocorr.intervals = 100, ess.reps = 20,
treedist = "PD", params = NA, max.sampling.interval = NA, ...)

analyze.rwty 3

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin. Default value is zero.

window.size The number of trees to include in each windows of sliding window plots
treespace.points

The number of trees to plot in the treespace plot. Default is 100

n.clades The number of clades to include in plots of split frequencies over the course of
the MCMC

min.freq The minimum frequency for a node to be used for calculating ASDSF. Default
is 0.1

fill.color The name of a column in your log file that you would like to use as the fill colour
of points in the treespace plots

filename Name of an output file (e.g., "output.pdf"). If none is supplied, rwty will not
save outputs to file.

overwrite Boolean variable saying whether output file should be overwritten, if it exists.

facet A Boolean expression indicating whether multiple chains should be plotted as
facet plots (default TRUE).

free_y TRUE/FALSE to turn free y scales on the facetted plots on or off (default FALSE).
Only works if facet = TRUE.

autocorr.intervals

The maximum number of intervals to use for autocorrelation plots.

ess.reps The number of replicate analyses to do when calculating the pseudo ESS.

treedist the type of tree distance metric to use, can be ’PD’ for path distance or ’RF’ for
Robinson Foulds distance.

params A vector of parameters to use when making the parameter correlation plots.
Defaults to the first two columns in the log table.

max.sampling.interval

The maximum sampling interval to use for generating autocorrelation plots

... Extra arguments to be passed to plotting and analysis functions.

Value

output The output is a list containing the following plots:

Plots of likelihood, model parameters, and tree topologies as a function of chain length (the first
two only when output from MCMC parameters has been loaded along with the tree topologies).

Plot of autocorrelation of tree topolgies at different sampling intervals along a chain

Plot of split frequencies calculated in sliding windows for the most variable clades

Plot of change in split frequencies between sliding windows for all clades

Plot of cumulative split frequencies as the MCMC progresses

Plot of change in cumulative split frequencies as the MCMC progresses

Heatmap and point depictions of chains in treespace.

4 check.chains

Plot of the Average Standard Deviation of Split Frequencies (ASDSF) between chains as the MCMC
progresses

Plot of pairwise correlations between split frequencies among chains

Plot of chains clustered by their pairwise ASDSF values

Examples

Not run:
data(fungus)
p <- analyze.rwty(fungus, burnin = 50, window.num = 50)
p

End(Not run)

check.chains Function for checking suitability of chains for rwty analyses, auto-
generating labels, etc

Description

This function is automatically called by many other functions, but can be run manually as well. It
performs a number of tests of chain format, labels, lengths, etc.

Usage

check.chains(chains)

Arguments

chains A list of rwty.chain objects.

Value

chains A list of rwty.chain objects

Examples

Not run:
data(fungus)
check.chains(fungus)

End(Not run)

clade.freq 5

clade.freq Returns clade names and frequencies

Description

Uses ape functionality to get the frequencies and names of clades in an MCMC chain or subset
thereof.

Usage

clade.freq(x, start, end, rooted = FALSE, ...)

Arguments

x A multiPhylo or rwty.chain object

start The index of the first tree to consider in calcuating frequencies

end The index of the last tree to consider in calculating frequencies

rooted (TRUE/FALSE). Tells RWTY whether your trees are rooted or not.

... Arguments to be passed to ape’s prop.part function

Value

clade.df A data froma containing clade names and frequencies

Examples

Not run:
data(fungus)
clade.freq(fungus$Fungus.Run1, start=10, end=100)

End(Not run)

combine.ptables Function for merging p tables for multiple MCMC chains

Description

This function is automatically called by some of the plot functions.

Usage

combine.ptables(chains, burnin)

6 cumulative.freq

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin

Value

ptable A data frame of likelihood values and model parameters for the supplied rwty.chain objects

Examples

Not run:
data(fungus)
combine.ptables(fungus, burnin=20)

End(Not run)

cumulative.freq Cumulative means of clade split frequencies.

Description

This function calculates the cumulative mean split frequencies of clades as an MCMC progresses.

Usage

cumulative.freq(chains, burnin = 0, window.size = 20)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin. Defaults to zero.

window.size The number of trees to include in each window (note, specified as a number of
sampled trees, not a number of generations)

Value

A list of rwty.cumulative objects, one per chain in the input list of chains. Each rwty.cumulative
object contains the cumulative mean split frequencies of clades at sp windows, and a translation
table that converts clade groupings to factors.

Examples

Not run:
data(fungus)
cumulative.data <- cumulative.freq(fungus, burnin=20)

End(Not run)

estimate.autocorr.m 7

estimate.autocorr.m Calculate sampling interval based on exponential semivariogram
model.

Description

This function uses an exponential semivariogram model to estimate the asymptotic topological dis-
tance, and uses that to estimate the sampling interval at which topological distances have reached
some fixed proportion of that value (default 0.95). It expects as input a data table output by rwty’s
topological.autocorr function

Usage

estimate.autocorr.m(dat, ac.cutoff = 0.95)

Arguments

dat A data frame output from topological.autocorr.

ac.cutoff Default 0.95. The proportion of the asymptotic topological distance to use as a
cutoff for determining sampling interval. For example, if ac.cutoff = 0.9, then
the minimum sampling interval returned is the one that guarantees a topological
distance at least 0.9 times the asymptotic value.

Value

A data frame consisting of the value matching the ac.cutoff proportion of the asymptotic topological
distance for each chain. This sampling interval estimates the interval at which topological distances
are no longer autocorrelated. If the value is larger than the largest sampling distance, the table
records this as a value of -1

Examples

data(fungus)
Not run:
To get a good estimate we need all sampling intervals
autocorr.intervals = as.integer(length(fungus[[1]]$trees)/21)
sampling.table <- topological.autocorr(fungus, burnin = 20, autocorr.intervals = autocorr.intervals)
estimate.autocorr.m(sampling.table)

End(Not run)

8 load.multi

fungus MrBayes output from analysis of Hibbett et al. data

Description

This is the output from a MrBayes run of 10,000,000 generations using the analysis settings from
the original .nex file. Sampling is one tree per 40,000 generations. Four chains are included, each
with its associated log file.

Usage

data(fungus)

Format

A data frame with four chains of 251 phylogenetic trees and associated likelihood and parameter
values.

References

Study reference: Hibbett D., Pine E., Langer E., Langer G., & Donoghue M. 1997. Evolution
of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proceedings of the
National Academy of Sciences of the United States of America, 94(22): 12002-12006.

http://treebase.org/treebase-web/search/study/summary.html?id=271

load.multi Load all matching files from a directory into a list of rwty.chain objects

Description

Finds trees and log files based on format definition, returns rwty.chain objects containing both

Usage

load.multi(path = ".", format = "mb", labels = NA, ...)

Arguments

path The path to the directory containing tree and log files

format File format, which is used to find tree and log files. Currently accepted values are
"mb" for MrBayes, "beast" for BEAST, "*beast" for *BEAST, and "revbayes"
for RevBayes. If you would like RWTY to understand additional formats, please
contact the authors and send us some sample data.

labels A vector of names to assign to chains as they are read in.

... Further arguments to be passed to load.trees.

load.trees 9

Value

output A list of rwty.chain objects containing the multiPhylos and the tables of values from the log
files if available.

Examples

#load.multi(path = "~/my trees/", format = "*beast")

load.trees Custom functions to load tree lists so that rwty can do basic processing
on the way in.

Description

Loads trees, looks for a log file of tree likelihoods and parameter values, returns an rwty.chain object
containing both

Usage

load.trees(file, type = NA, format = "mb", gens.per.tree = NA,
trim = 1, logfile = NA, skip = NA)

Arguments

file A path to a tree file containing an MCMC chain of trees

type An argument that designates the type of tree file. If "nexus", trees are loaded
using ape’s read.nexus function. Otherwise, it’s read.tree. If a "format"
argument is passed, type will be determined from the format definition.

format File format, which is used to find tree and log files. Currently accepted values are
"mb" for MrBayes, "beast" for BEAST, "*beast" for *BEAST, and "revbayes"
for RevBayes. If you would like RWTY to understand additional formats, please
contact the authors and send us some sample data.

gens.per.tree The number of generations separating trees. If not provided, RWTY will attempt
to calculate it automatically.

trim Used for thinning the chain. If a number N is provided, RWTY keeps every Nth
tree.

logfile A path to a file containing model parameters and likelihoods. If no path is
provided but a "format" argument is supplied, RWTY will attempt to find the
log file automatically based on the format definition.

skip The number of lines that must be skipped to get to the header of the log file. Mr-
Bayes, for instance, prints a comment line at the top of the log file, so MrBayes
files should be read in with a skip value of 1. If no "skip" value is provided but a
"format" is supplied, RWTY will attempt to read logs using the skip value from
the format definition.

10 makeplot.acsf.cumulative

Value

output An rwty.chain object containing the multiPhylo and the table of values from the log file if
available.

See Also

read.tree, read.nexus

Examples

#load.trees(file="mytrees.t", format = "mb")

makeplot.acsf.cumulative

Plot the Change in Split Frequencies (CSF) in sliding windows over
the course of an MCMC.

Description

This function takes one or more rwty.chain ojects and returns a plot of CSF within each chain as
the MCMC progresses. The solid line with points shows the Average Change in Split Frequencies
(ACSF; it is average across the changes in split frequencies from all clades in the analysis) between
this window and the previous window The grey ribbon shows the upper and lower 95

Usage

makeplot.acsf.cumulative(chains, burnin = 0, window.size = 20,
facet = TRUE)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin. Defaults to zero.

window.size The number of trees to include in each window (note, specified as a number of
sampled trees, not a number of generations)

facet (TRUE/FALSE). TRUE: return a single plot with one facet per chain; FALSE:
return a list of individual plots with one plot per chain

Value

output A plof of the CSF between sliding windows over all chains

acsf.plot A ggplot object, or list of ggplot objects

makeplot.acsf.sliding 11

Examples

Not run:
data(fungus)
makeplot.acsf.cumulative(fungus, burnin=20)

End(Not run)

makeplot.acsf.sliding Plot the Chaing in Split Frequencies (CSF) in sliding windows over
the course of an MCMC.

Description

This function takes one or more rwty.chain ojects and returns a plot of CSF within each chain as
the MCMC progresses. The solid line with points shows the Average Change in Split Frequencies
(ACSF) between this window and the previous window The grey ribbon shows the upper and lower
95

Usage

makeplot.acsf.sliding(chains, burnin = 0, window.size = 20,
facet = TRUE)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin. Defaults to zero.

window.size The number of trees to include in each window (note, specified as a number of
sampled trees, not a number of generations)

facet (TRUE/FALSE). TRUE: return a single plot with one facet per chain; FALSE:
return a list of individual plots with one plot per chain

Value

output A plof of the CSF between sliding windows over all chains

acsf.plot A ggplot object, or list of ggplot objects

Examples

Not run:
data(fungus)
makeplot.acsf.sliding(fungus, burnin=20)

End(Not run)

12 makeplot.all.params

makeplot.all.params Plotting all parameters

Description

Plots all parameter values, including tree topologies (see makeplot.topology) over the length of the
MCMC chain

Usage

makeplot.all.params(chains, burnin = 0, facet = TRUE, free_y = FALSE,
strip = 1)

Arguments

chains A set of rwty.chain objects

burnin The number of trees to omit as burnin.

facet Boolean denoting whether to make a facet plot.

free_y TRUE/FALSE to turn free y scales on the facetted plots on or off (default FALSE).
Only works if facet = TRUE.

strip Number indicating which column to strip off (i.e., strip=1 removes first column,
which is necessary for most MCMC outputs in which the first column is just the
generation). You can skip multiple columns by passing a vector of columns to
skip, e.g., strip=c(1,4,6).

Value

param.plot Returns a list of ggplot objects.

Examples

Not run:
data(fungus)
makeplot.all.params(fungus, burnin=20)

End(Not run)

makeplot.asdsf 13

makeplot.asdsf Plot the Standard Deviation of Split Frequencies over the course of an
MCMC.

Description

This function takes two or more rwty.chain ojects and returns a plot of ASDSF as the run progresses.
The solid line with points shows the Average Standard Deviation of Split Frequences at the current
generation The grey ribbon shows the upper and lower 95

Usage

makeplot.asdsf(chains, burnin = 0, window.size = 20, min.freq = 0,
log.y = TRUE)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin. Defaults to zero.

window.size The number of trees between each point at which the ASDSFs is calculated
(note, specified as a number of sampled trees, not a number of generations)

min.freq The minimum frequency for a node to be used for calculating ASDSF.

log.y Controls whether they Y axis is plotted on a log scale or not. Which scale
is more useful depends largely on the amount of disagreement between your
chains. Attempting to make an asdsf plot with a log Y axis for chains that
include standard deviations of zero will result in warning messages.

Value

output A cumulative plot of ASDSF across all chains

Examples

Not run:
data(fungus)
p <- makeplot.asdsf(fungus, burnin = 20)
p

End(Not run)

14 makeplot.autocorr

makeplot.autocorr Make autocorrelation plots of tree topologies from MCMC analyses

Description

This function takes a list of rwty.chain objects, and makes an autocorrelation plot for each chain.
Each plot shows the mean phylogenetic distance at a series of sampling intervals. In really well
behaved MCMC analyses, the mean distance will stay constant as the sampling interval increases.
If there is autocorrelation, the mean distance will increase as the sampling interval increases, and
is expected to level off when the autocorrelation decreases to zero. The function calculates path
distances, though other distances could also be employed.

Usage

makeplot.autocorr(chains, burnin = 0, max.sampling.interval = NA,
autocorr.intervals = 40, squared = FALSE, facet = FALSE,
free_y = FALSE, treedist = "PD", use.all.samples = FALSE)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin.
max.sampling.interval

The largest sampling interval for which you want to calculate the mean distance
between pairs of trees (default is 10 percent of the length of the chain).

autocorr.intervals

The number of sampling intervals to use. These will be spaced evenly between
1 and the max.sampling.interval

squared TRUE/FALSE use squared tree distances (necessary to calculate approximate
ESS; default FALSE)

facet TRUE/FALSE to turn facetting of the plot on or off (default FALSE)

free_y TRUE/FALSE to turn free y scales on the facetted plots on or off (default FALSE).
Only works if facet = TRUE.

treedist the type of tree distance metric to use, can be ’PD’ for path distance or ’RF’ for
Robinson Foulds distance

use.all.samples

(TRUE/FALSE). Whether to calculate autocorrelation from all possible pairs
of trees in your chain. The default is FALSE, in which case 500 samples are
taken at each sampling interval. This is sufficient to get reasonably accurate
estimates of the approximate ESS. Setting this to TRUE will give you slightly
more accurate ESS estimates, at the cost of potentially much longer execution
times.

Value

A ggplot2 plot object, with one line (facetting off) or facet (facetting on) per rwty.chain object.

makeplot.pairs 15

Examples

Not run:
data(fungus)
makeplot.autocorr(fungus, burnin = 20)

End(Not run)

makeplot.pairs Plotting parameters against each other

Description

Makes a plot matrix of each parameter against each other (including the topology) in your analysis.
The default behaviour is to just plot the first two columns of your parameter file (after removing
the column for the generation number) as well as the topological distance. This usually means that
you see a pairs plot with the likelihood, the tree length, and the tree toppology. We do this because
some parameter files contain so many columns that the plot matrix becomes too busy. To include
parameters of your choice, use the ’parameters’ argument. In this function, the topological distance
is calculate from the first tree in every chain.

Usage

makeplot.pairs(chains, burnin = 0, treedist = "PD", params = NA,
strip = 1)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to omit as burnin.

treedist the type of tree distance metric to use, can be ’PD’ for path distance or ’RF’ for
Robinson Foulds distance

params ’NA’, ’all’, or a vector of column names to include in the plot. ’NA’ gives the
default behaviour (see above). ’all’ plots all columns (watch out!). Choose
specific columns by name with a vector.

strip Number indicating which column to strip off (i.e., strip=1 removes first column,
which is necessary for most MCMC outputs in which the first column is just the
generation).

Value

pairs.plot Returns a ggplot object.

16 makeplot.param

Examples

Not run:
data(salamanders)
makeplot.pairs(salamanders[1], burnin=20)

plot all the variables
makeplot.pairs(salamanders[1], burnin=20, params = 'all')

plot specific the variables (note: you always get the topological distance)
makeplot.pairs(salamanders[1], burnin=20, params = c('pi.A.', 'pi.C.', 'pi.G.', 'pi.T.'))

End(Not run)

makeplot.param Plotting parameters

Description

Plots parameter values over the length of the MCMC chain

Usage

makeplot.param(chains, burnin = 0, parameter = "LnL", facet = TRUE,
free_y = FALSE)

Arguments

chains A set of rwty.chain objects.

burnin The number of trees to omit as burnin.

parameter The column name of the parameter to plot.

facet Boolean denoting whether to make a facet plot.

free_y TRUE/FALSE to turn free y scales on the facetted plots on or off (default FALSE).
Only works if facet = TRUE.

Value

param.plot Returns a ggplot object.

Examples

Not run:
data(fungus)
makeplot.param(fungus, burnin=20, parameter="pi.A.")

End(Not run)

makeplot.pseudo.ess 17

makeplot.pseudo.ess Plot the pseudo ESS of tree topologies from MCMC chains.

Description

This function takes a list of rwty.chain objects, and plots the pseudo ESS of the tree topologies from
each chain, after removing burnin. Each caulcation is repeated n times, where in each replicate a
random tree from the chain is chosen as a ’focal’ tree. The calculation works by calculating the path
distance of each tree in the chain from the focal tree, and calculating the ESS of the resulting vector
of phylogenetic distances using the effectiveSize function from the coda package. NB this function
requires the calculation of many tree distances, so can take some time.

Usage

makeplot.pseudo.ess(chains, burnin = 0, n = 20)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin

n The number of replicate analyses to do

Value

pseudo.ess.plot A ggplot2 plot object, in which each chain is represented by a point which represents
the median pseudo ESS from the n replicates, and whiskers representing the upper and lower 95

Examples

Not run:
data(fungus)
makeplot.pseudo.ess(fungus, burnin = 20, n = 10)

End(Not run)

makeplot.splitfreq.matrix

Plots a matrix of split frequency comparisons between multiple
MCMC chains.

Description

This function takes list of rwty.chain objects, and returns a scatterplot matrix in which each plot
shows the split frequencies of all clades that appear in one or both MCMC chains at least once. In
the upper diagonal, we show the correlation between the split frequencies (Pearson’s R), and the
Average Standard Deviation of the split frequencies.

18 makeplot.splitfreqs.cumulative

Usage

makeplot.splitfreq.matrix(chains, burnin = 0)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin

Value

output A list of two plots: the first is a matrix of scatterplots, where each point is a clade, and the
values are the split frequencies of that clade in the post-burnin trees of each chain. The second plot
is a tree of the chains clustered by their ASDSFs.

Examples

Not run:
data(salamanders)
makeplot.splitfreq.matrix(salamanders[1:4], burnin = 20)

End(Not run)

makeplot.splitfreqs.cumulative

Plot cumulative split frequencies over the course of an MCMC

Description

Takes a list of rwty.chain objects. Plots the cumulative split frequencies of clades over the course
of the MCMC. Stationarity is indicated by split frequencies levelling out. Only plots the n.clades
most variable clades, as measured by the standard deviation of the split frequencies of each clade
across all windows. Each line in the plot represents a single clade. The colour of the line represents
the standard deviation of the split frequencies of that clade across all sliding windows.

Usage

makeplot.splitfreqs.cumulative(chains, burnin = 0, n.clades = 20,
window.size = 20, facet = TRUE, rank = "wcsf")

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin

n.clades The number of clades to plot

window.size The number of trees to include in each window (note, specified as a number of
sampled trees, not a number of generations)

makeplot.splitfreqs.sliding 19

facet (TRUE/FALSE). TRUE: return a single plot with one facet per chain; FALSE:
return a list of individual plots with one plot per chain

rank (’wcsf’, ’sd’). How to rank the clades? By default, we plot the 20 ’worst’ clades.
This parameter sets the definition of ’worst’. The default is to rank the by the
weighted change in split frequencies (rank = ’wcsf’). This works by looking at
the change in the cumulative split frequency over the course of the MCMC, and
ranks the worst chains as those that do not level off (i.e. those that have changes
near the end). We do this because in a well-behaved chain, we expect the cumu-
lative split frequencies to level off once the chain has been run for long enough.
So, any cumulative split frequencies which are still changing towards the end
of your run are likely to indicate problematic clades. Specifically, we multiply
the absolute change in split frequencies for each clade by a set of weights that
increase linearly towards the end of the chain (the first observation gets a weight
of zero, the final observation gets a weight of one). The original AWTY ranked
clades by their standard deviations (higher SD = worse), so we include this as
an option too. To do this, just set rank = ’sd’.

Value

splitfreqs.plot Either a single ggplot2 object or a list of ggplot2 objects.

Examples

Not run:
data(fungus)
makeplot.splitfreqs.cumulative(fungus, burnin = 20, n.clades=25)

End(Not run)

makeplot.splitfreqs.sliding

Plot split frequencies in sliding windows over the course of an MCMC

Description

Takes a list of rwty.chain objects. Plots the split frequencies of clades over the course of the MCMC,
calculated from windows of a specified size. Only plots the n.clades most variable clades, as mea-
sured by the standard deviation of the split frequencies of each clade across the MCMC. Each line
in the plot represents a single clade. The colour of the line represents the standard deviation of the
split frequencies of that clade across the MCMC.

Usage

makeplot.splitfreqs.sliding(chains, burnin = 0, n.clades = 20,
window.size = 20, facet = TRUE, rank = "ess")

20 makeplot.topology

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin

n.clades The number of clades to plot

window.size The number of trees to include in each window (note, specified as a number of
sampled trees, not a number of generations)

facet (TRUE/FALSE). TRUE: return a single plot with one facet per chain; FALSE:
return a list of individual plots with one plot per chain

rank (’ess’, ’sd’). How to rank the clades? By default, we plot the 20 ’worst’ clades.
This parameter sets the definition of ’worst’. The default is to rank the clades
by increasing Effective Sample Size (i.e. the 20 worst clades are those with the
lowest ESS), since in a sliding window plot we expect well-sampled splits to
have a high value (rank = "ess"). The original AWTY ranked clades by their
standard deviations. To do this, just set rank = ’sd’.

Value

splitfreqs.plot Either a single ggplot2 object or a list of ggplot2 objects.

Examples

Not run:
data(fungus)
makeplot.splitfreqs.sliding(fungus, burnin = 20, n.clades=25)

End(Not run)

makeplot.topology Plotting parameters

Description

Plots a trace of topological distances of trees over the length of the MCMC chain. The plot shows
the path distance of each tree in each chain from the last tree of the burnin of the first chain. If
burnin is set to zero, then distances are calculated from the first tree of the first chain. If required,
the behaviour can be changed to plot the path distance of each tree from the last tree of the burnin
of each chain, using the independent.chains option. This is not recommended in most cases.

Usage

makeplot.topology(chains, burnin = 0, facet = TRUE, free_y = FALSE,
independent.chains = FALSE, treedist = "PD", approx.ess = TRUE)

makeplot.treespace 21

Arguments

chains A set of rwty.chain objects.
burnin The number of trees to omit as burnin.
facet TRUE/FALSE denoting whether to make a facet plot (default TRUE)
free_y TRUE/FALSE to turn free y scales on the facetted plots on or off (default FALSE).

Only works if facet = TRUE.
independent.chains

TRUE/FALSE if FALSE (the default) then the plots show the distance of each
tree from the last tree of the burnin of the first chain. If TRUE, the plots show the
distance of each tree from the first tree of the chain in which that tree appears.
The TRUE option should only be used in the case that different chains represent
analyses of different genes or datasets.

treedist the type of tree distance metric to use, can be ’PD’ for path distance or ’RF’ for
Robinson Foulds distance

approx.ess TRUE/FALSE do you want the approximate topological ess to be calculated and
displayed for each chain?

Value

topology.trace.plot Returns a ggplot object.

Examples

Not run:
data(fungus)
makeplot.topology(fungus, burnin=20)

End(Not run)

makeplot.treespace Plot chains in treespace.

Description

This function will take list of rwty.chains objects and produce plots of chains in treespace.

Usage

makeplot.treespace(chains, burnin = 0, n.points = 100,
fill.color = NA)

Arguments

chains A list of one or more rwty.chain objects
burnin The number of samples to remove from the start of the chain as burnin
n.points The number of points on each plot
fill.color The name of any column in your parameter file that you would like to use as a

fill colour for the points of the plot.

22 parse.clades

Value

A list of two ggplot objects: one plots the points in treespace, the other shows a heatmap of the
same points

Examples

Not run:
data(fungus)

p <- makeplot.treespace(fungus, burnin = 20, fill.color = 'LnL')
Treespace plot for all the fungus data

NB: these data indicate significant problems: the chains are sampling very
different parts of tree space.
#
View the points plotted in treespace (these data indicate significant problems)
p$treespace.points.plot

View the heatmap of the same data
Note that this data is so pathologically bad that the heatmap is not
very useful. It is more useful on better behaved datasets
p$treespace.heatmap

we can also plot different parameters as the fill colour.
e.g. we can plot the first two fungus chains with likelihood as the fill
makeplot.treespace(fungus[1:2], burnin = 100, fill.color = 'LnL')

or with tree length as the fill
makeplot.treespace(fungus[1:2], burnin = 100, fill.color = 'TL')

you can colour the plot with any parameter in your ptable
to see which parameters you have you can simply do this:
names(fungus[[1]]$ptable)

End(Not run)

parse.clades Rename clades for easy recall

Description

Converts a list of clades (e.g., "1 2 3 4" as a clade) and returns a list of parsed clades, converting
numbers to names using a set of trees. Called internally by the slide and cumulative analyses, not
user-facing.

Usage

parse.clades(clades, treelist)

print.rwty.chain 23

Arguments

clades A list of clades, as in the first column of a cladetable in an rwty.slide or rwty.cumulative
object.

treelist A list of trees, used for getting tip names.

Value

output A list of clades with parsed tip names

print.rwty.chain Function for printing rwty.chain objects

Description

This function is automatically called when printing a rwty.chain object

Usage

S3 method for class 'rwty.chain'
print(x, ...)

Arguments

x A rwty.chain object

... Other arguments to be passed on to next function

Value

A summary of the contents of the chain

Examples

data(fungus)
fungus$Fungus.Run1

24 slide.freq

salamanders MrBayes output from analysis of Williams et al. data

Description

This is the output from a MrBayes run of 25,000,000 generations using the analysis settings from
the original .nex files. Sampling is one tree per 100,000 generations. Data is from alignments of
three separate sequences, two chains per alignment, each with its associated log file.

Usage

data(salamanders)

Format

A data frame with six chains (two each from three separate alignments) of 251 phylogenetic trees
and associated likelihood and parameter values.

References

Study reference: Williams JS, Niedzwiecki JH, Weisrock DW (2013) Species tree reconstruction of
a poorly resolved clade of salamanders (Ambystomatidae) using multiple nuclear loci. Molecular
Phylogenetics and Evolution 68(3): 671-682. http://dx.doi.org/10.1016/j.ympev.2013.04.013

Dryad reference: Williams JS, Niedzwiecki JH, Weisrock DW (2013) Data from: Species tree
reconstruction of a poorly resolved clade of salamanders (Ambystomatidae) using multiple nuclear
loci. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.2gq14

http://datadryad.org/resource/doi:10.5061/dryad.2gq14

slide.freq Sliding window measurements of clade split frequencies.

Description

This function takes sliding windows of a specified length over an MCMC chain and calculates the
split frequency of clades within that window. It allows users to see whether the chain is visiting
different areas of treespace.

Usage

slide.freq(chains, burnin = 0, window.size = 20)

topological.approx.ess 25

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin. Defaults to zero.

window.size The number of trees to include in each window (note, specified as a number of
sampled trees, not a number of generations)

Value

A list of rwty.slide objects, one per chain in the input list of chains. Each rwty.slide object con-
tains the frequencies of clades in the sliding windows, and a translation table that converts clade
groupings to factors.

Examples

Not run:
data(fungus)
slide.data <- slide.freq(fungus, burnin=20)\

End(Not run)

topological.approx.ess

Calculate the approximate Effective Sample Size (ESS) of tree topolo-
gies

Description

This function takes a list of rwty.chain objects, and calculates the pseudo ESS of the trees from each
chain, after removing burnin. The calculation uses the autocorrelation among squared topological
distances between trees to calculate an approximate ESS of tree topologies for each chain. NB this
function requires the calculation of many many tree distances, so can take some time.

Usage

topological.approx.ess(chains, burnin = 0, max.sampling.interval = 100,
treedist = "PD", use.all.samples = FALSE)

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin
max.sampling.interval

The largest sampling interval you want to use to calculate the ESS. Every sam-
pling interval up to and including this number will be sampled. Higher is better,
but also slower. In general, setting this number to 100 (the default) should be
fine for most cases. However, if you get an upper bound on the ESS estimate (i.e.

26 topological.autocorr

ESS<x) rather than a point estimate (i.e. ESS = x) then that indicates a higher
max.sampling.interval would be better, because the algorithm could not find the
asymptote on the autocorrelation plot with the current max.sampling.interval.

treedist the type of tree distance metric to use, can be ’PD’ for path distance or ’RF’ for
Robinson Foulds distance

use.all.samples

(TRUE/FALSE). Whether to calculate autocorrelation from all possible pairs of
trees in your chain. The default is FALSE, in which case 500 samples are taken
at each sampling interval. Setting this to TRUE will give you slightly more
accurate ESS estimates, at the cost of potentially much longer execution times.

Value

A data frame with one row per chain, and columns describing the approximate ESS and the name
of the chain.

Examples

Not run:
data(fungus)
topological.approx.ess(fungus, burnin = 20)

End(Not run)

topological.autocorr Calculate data for autocorrelation plots of tree topologies from
MCMC analyses

Description

This function takes a list of rwty.chain objects, and calculates the mean phylogenetic distance at
a series of roughly even sampling intervals. In really well behaved MCMC analyses, the mean
distance will stay constant as the sampling interval increases. If there is autocorrelation, it will
increase as the sampling interval increases, and is expected to level off when the autocorrelation
decreases to zero. The function calculates path distances, though other distances could also be
employed.

Usage

topological.autocorr(chains, burnin = 0, max.sampling.interval = NA,
autocorr.intervals = 100, squared = FALSE, treedist = "PD",
use.all.samples = FALSE)

topological.pseudo.ess 27

Arguments

chains A list of rwty.chain objects.
burnin The number of trees to eliminate as burnin
max.sampling.interval

The largest sampling interval for which you want to calculate the mean distance
between pairs of trees (default is 10 percent of the length of the list of trees).

autocorr.intervals

The number of sampling intervals to use. These will be spaced evenly between
1 and the max.sampling.interval

squared TRUE/FALSE use squared tree distances (necessary to calculate approximate
ESS)

treedist the type of tree distance metric to use, can be ’PD’ for path distance or ’RF’ for
Robinson Foulds distance

use.all.samples

(TRUE/FALSE). Whether to calculate autocorrelation from all possible pairs
of trees in your chain. The default is FALSE, in which case 500 samples are
taken at each sampling interval. This is sufficient to get reasonably accurate
estimates of the approximate ESS. Setting this to TRUE will give you slightly
more accurate ESS estimates, at the cost of potentially much longer execution
times.

Value

A data frame with one row per sampling interval, per chain. The first column is the sampling
interval. The second column is the mean path distance between pairs of trees from that sampling
interval. The third column is the chain ID.

Examples

Not run:
data(fungus)
topological.autocorr(fungus, burnin = 20)

End(Not run)

topological.pseudo.ess

Calculate the pseudo Effective Sample Size (ESS) of tree topologies

Description

This function takes a list of rwty.chain objects, and calculates the pseudo ESS of the trees from
each chain, after removing burnin. Each caulcation is repeated n times, where in each replicate a
random tree from the chain is chosen as a ’focal’ tree. The calculation works by calculating the path
distance of each tree in the chain from the focal tree, and calculating the ESS of the resulting vector
of phylogenetic distances using the effectiveSize function from the coda package. NB this function
requires the calculation of many many tree distances, so can take some time.

28 tree.dist.matrix

Usage

topological.pseudo.ess(chains, burnin = 0, n = 20, treedist = "PD")

Arguments

chains A list of rwty.chain objects.

burnin The number of trees to eliminate as burnin

n The number of replicate analyses to do

treedist the type of tree distance metric to use, can be ’PD’ for path distance or ’RF’ for
Robinson Foulds distance

Value

A data frame with one row per chain, and columns describing the median ESS, the upper and lower
95 replicates performed, and the name of the chain.

Examples

Not run:
data(fungus)
topological.pseudo.ess(fungus, burnin = 20, n = 20)

End(Not run)

tree.dist.matrix Tree distance matrix calculation

Description

This function takes a list of trees and returns a distance matrix populated with distances between all
trees in the list.

Usage

tree.dist.matrix(trees, treedist = "rf", ...)

Arguments

trees an object of class ’multiPhylo’.

treedist acronym of distance method to employ: one of cid, icrf, jrf, mast, masti,
ms, msid, nni, pd, pid, rf (default), or spr. See below for details.

dots additional parameters sent to distance functions.

Value

a matrix of distances between each pair of trees

tree.dist.matrix 29

Recommended methods

A suite of distance metrics are implemented, offering a trade-off between running time and suitabil-
ity of metric. Ranked according to their running time with 251 85-tip trees on a low-spec desktop
computer, recommended distance metrics are:

- rf (0.4 seconds): Robinson-Foulds distance (Robinson & Foulds, 1981): although widely used,
the RF metric has a series of theoretical shortcomings that give rise to bias and artefacts, translating
to poor performance in a suite of practical applications. Its low resolution and rapid saturation make
it particularly unsuitable for operations in tree space. Nevertheless, its speed is hard to match.

- pd (1 s): The path (= cladistic / nodal / patristic / tip) distance (Farris 1973) can also be calculated
rapidly, but is heavily influenced by the shape (e.g. balanced / unbalanced) of trees, meaning that
similar-looking trees that nevertheless denote very different sets of relationships will have shorter
distances than may be anticipated. Consequently, the path metric does a poor job of identifying
clusters of similar trees.

- icrf (1.4 s): Robinson-Foulds distance, corrected for split size using information theory (Smith
2020). This measure adjusts the Robinson-Foulds distance to account for the different significance
of different partitions: partitions that evenly divide taxa contain more information, and thus should
contribute more to a distance score if they are not shared between trees. This adjustment improves
the resolution and sensitivity of the metric, but does not correct for a number of arguably more
significant biases.

- pid (4 s); msid (8 s); cid (30 s): Phylogenetic information distance, matching split information
distance and clustering information distance (Smith 2020). These information-theoretic methods
belong to the class of Generalized Robinson-Foulds distances: by recognizing similarities between
non-identical splits, they overcome many of the artefacts that affect the RF distance, providing a
more representative measure of tree distances; whereas their information-theoretic basis affords
them a natural unit (the bit), providing a measurable dimension to tree space. Whilst the CID
performs the best against a suite of theoretical and practical criteria, the MSID comes a very close
second and is somewhat quicker to calculate. The PID will provide unexpectedly large distances in
a subset of the cases that distort the RF metric, which may result in undesirable distortions of an
accompanying tree space.

Detailed analysis of the behaviour of these and other tree distance methods against a suite of criteria
is available in Smith (2020); implementation details are provided in the R package ’TreeDist’.

Further methods

A further set of methods that underperform methods with similar running time listed above are also
implemented for comparative purposes:

- mast, masti (30 minutes): size / information content of the maximum agreement forest, sub-
tracted from its maximum possible value to create a distance. Specify ‘rooted = FALSE‘ if trees are
unrooted.

- jrf (1 min, k = 2; 25 min, conflict-ok; 4 h, k = 4, no-conflict): Jaccard Robinson-Foulds metric
(Böcker et al. 2013); specify a value of k and allowConflict using

- ms (5 s): Matching split distance (Bogdanowicz and Giaro 2012; Lin et al. 2012.

- nye (65 s): The generalized RF distance of Nye et al. (2006).

- nni (65 s): Approximate Nearest Neighbour Interchance (rotation) distance.

- spr (0.4 s): Approximate Subtree Prune and Regraft distance.

https://ms609.github.io/TreeDist/index.html

30 treespace

References

Böcker S, Canzar S, Klau GW (2013). “The generalized Robinson-Foulds metric.” In Darling A,
Stoye J (eds.), Algorithms in Bioinformatics. WABI 2013. Lecture Notes in Computer Science, vol
8126, 156–169. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-40453-5_13.

Bogdanowicz D, Giaro K (2012). “Matching split distance for unrooted binary phylogenetic trees.”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(1), 150–160. doi: 10.1109/TCBB.2011.48.

Farris JS (1973). “On comparing the shapes of taxonomic trees.” Systematic Zoology, 22(1), 50–54.
doi: 10.2307/2412378.

Lin Y, Rajan V, Moret BME (2012). “A metric for phylogenetic trees based on matching.” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 4(9), 1014–1022. doi: 10.1109/TCBB.2011.157.

Nye TMW, Liò P, Gilks WR (2006). “A novel algorithm and web-based tool for comparing two al-
ternative phylogenetic trees.” Bioinformatics, 22(1), 117–119. doi: 10.1093/bioinformatics/bti720.

Robinson DF, Foulds LR (1981). “Comparison of phylogenetic trees.” Mathematical Biosciences,
53(1-2), 131–147. doi: 10.1016/0025-5564(81)90043-2.

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, in production. doi: 10.1093/bioinformatics/btaa614.

Examples

Not run:
data(fungus)
tree.dist.matrix(fungus$Fungus.Run1$trees)

End(Not run)

treespace MDS scaling of treespace for a single tree list.

Description

This function constructs a distance matrix from a list of trees and uses multi-dimensional scaling to
collapse it to a two- dimensional tree space for plotting.

Usage

treespace(chains, n.points = 100, burnin = 0, fill.color = NA)

Arguments

chains A list of 1 or more rwty.chain objects.

n.points The minimum number of points you want in your plot.

burnin The number of trees to eliminate as burnin. Default is zero.

fill.color The name of the column from the log table that that you would like to use to
colour the points in the plot.

treespace 31

Value

Returns a list containing the points and a plot.

Examples

Not run:
data(fungus)
treespace(fungus, n.points=50, burnin=20, fill.color="LnL")

End(Not run)

Index

∗ ASDSF,
makeplot.asdsf, 13

∗ ASDSF
makeplot.splitfreq.matrix, 17

∗ Clade
clade.freq, 5

∗ ESS,
makeplot.pseudo.ess, 17

∗ ESS
analyze.rwty, 2

∗ MCMC,
analyze.rwty, 2
check.chains, 4
combine.ptables, 5
cumulative.freq, 6
load.multi, 8
load.trees, 9
makeplot.asdsf, 13
makeplot.splitfreq.matrix, 17
print.rwty.chain, 23
slide.freq, 24

∗ Phylogenetics,
load.multi, 8
load.trees, 9

∗ autocorrelation,
estimate.autocorr.m, 7
makeplot.autocorr, 14
topological.autocorr, 26

∗ awty,
check.chains, 4
combine.ptables, 5
print.rwty.chain, 23

∗ clade
makeplot.splitfreq.matrix, 17

∗ consensus,
clade.freq, 5
makeplot.splitfreq.matrix, 17

∗ convergence,
check.chains, 4

combine.ptables, 5
makeplot.acsf.cumulative, 10
makeplot.acsf.sliding, 11
makeplot.all.params, 12
makeplot.pairs, 15
makeplot.param, 16
makeplot.splitfreq.matrix, 17
makeplot.topology, 20
print.rwty.chain, 23

∗ convergence
cumulative.freq, 6
slide.freq, 24

∗ cumulative
makeplot.asdsf, 13

∗ datasets
fungus, 8
salamanders, 24

∗ distance,
topological.approx.ess, 25
topological.pseudo.ess, 27

∗ distance
estimate.autocorr.m, 7
makeplot.autocorr, 14
makeplot.pseudo.ess, 17
topological.approx.ess, 25
topological.autocorr, 26
topological.pseudo.ess, 27

∗ frequencies,
clade.freq, 5

∗ frequency,
cumulative.freq, 6
makeplot.splitfreq.matrix, 17
slide.freq, 24

∗ load,
load.multi, 8

∗ load
load.trees, 9

∗ mcmc,
clade.freq, 5

32

INDEX 33

makeplot.acsf.cumulative, 10
makeplot.acsf.sliding, 11
makeplot.all.params, 12
makeplot.pairs, 15
makeplot.param, 16
makeplot.splitfreqs.cumulative, 18
makeplot.splitfreqs.sliding, 19
makeplot.topology, 20

∗ mds,
treespace, 30

∗ multi-dimensional
treespace, 30

∗ parameter,
makeplot.all.params, 12
makeplot.pairs, 15
makeplot.param, 16
makeplot.topology, 20

∗ path
estimate.autocorr.m, 7
makeplot.autocorr, 14
makeplot.pseudo.ess, 17
topological.approx.ess, 25
topological.autocorr, 26
topological.pseudo.ess, 27

∗ phylogenetics,
check.chains, 4
combine.ptables, 5
makeplot.acsf.cumulative, 10
makeplot.acsf.sliding, 11
makeplot.asdsf, 13
makeplot.splitfreq.matrix, 17
makeplot.splitfreqs.cumulative, 18
makeplot.splitfreqs.sliding, 19
print.rwty.chain, 23

∗ phylogenetics
clade.freq, 5
makeplot.all.params, 12
makeplot.pairs, 15
makeplot.param, 16
makeplot.topology, 20

∗ plot,
makeplot.all.params, 12
makeplot.pairs, 15
makeplot.param, 16
makeplot.topology, 20
makeplot.treespace, 21
print.rwty.chain, 23

∗ plots,

analyze.rwty, 2
∗ plot

makeplot.splitfreqs.cumulative, 18
makeplot.splitfreqs.sliding, 19

∗ robinson-foulds
tree.dist.matrix, 28

∗ rwty,
analyze.rwty, 2

∗ rwty
check.chains, 4
combine.ptables, 5
makeplot.treespace, 21
print.rwty.chain, 23

∗ scaling
treespace, 30

∗ sliding
makeplot.splitfreqs.cumulative, 18
makeplot.splitfreqs.sliding, 19

∗ split
cumulative.freq, 6
slide.freq, 24

∗ topology,
analyze.rwty, 2

∗ tree-distance
tree.dist.matrix, 28

∗ treespace,
makeplot.treespace, 21
topological.approx.ess, 25
topological.pseudo.ess, 27
treespace, 30

∗ treespace
tree.dist.matrix, 28

∗ trees
load.multi, 8

∗ tree
topological.approx.ess, 25
topological.pseudo.ess, 27

∗ uncertainty
makeplot.acsf.cumulative, 10
makeplot.acsf.sliding, 11

∗ window,
makeplot.splitfreqs.cumulative, 18
makeplot.splitfreqs.sliding, 19

analyze.rwty, 2

check.chains, 4
clade.freq, 5
combine.ptables, 5

34 INDEX

cumulative.freq, 6

estimate.autocorr.m, 7

fungus, 8

load.multi, 8
load.trees, 9

makeplot.acsf.cumulative, 10
makeplot.acsf.sliding, 11
makeplot.all.params, 12
makeplot.asdsf, 13
makeplot.autocorr, 14
makeplot.pairs, 15
makeplot.param, 16
makeplot.pseudo.ess, 17
makeplot.splitfreq.matrix, 17
makeplot.splitfreqs.cumulative, 18
makeplot.splitfreqs.sliding, 19
makeplot.topology, 20
makeplot.treespace, 21

parse.clades, 22
print.rwty.chain, 23

read.nexus, 9, 10
read.tree, 9, 10

salamanders, 24
slide.freq, 24

topological.approx.ess, 25
topological.autocorr, 26
topological.pseudo.ess, 27
tree.dist.matrix, 28
treespace, 30

	analyze.rwty
	check.chains
	clade.freq
	combine.ptables
	cumulative.freq
	estimate.autocorr.m
	fungus
	load.multi
	load.trees
	makeplot.acsf.cumulative
	makeplot.acsf.sliding
	makeplot.all.params
	makeplot.asdsf
	makeplot.autocorr
	makeplot.pairs
	makeplot.param
	makeplot.pseudo.ess
	makeplot.splitfreq.matrix
	makeplot.splitfreqs.cumulative
	makeplot.splitfreqs.sliding
	makeplot.topology
	makeplot.treespace
	parse.clades
	print.rwty.chain
	salamanders
	slide.freq
	topological.approx.ess
	topological.autocorr
	topological.pseudo.ess
	tree.dist.matrix
	treespace
	Index

